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Galectin-4 in normal tissues and cancer
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Galectin-4 belongs to a subfamily of galectins composed of two carbohydrate recognition domains within the same peptide
chain. The two domains have all the conserved galectin signature amino acids, but their overall sequences are only
approximately 40% identical. Both domains bind lactose with a similar affinity as other galectins, but their respective
preferences for other disaccharides, and larger saccharides, are distinctly different. Thus galectin-4 has a property of a
natural cross-linker, but in a modified sense since each domain prefers a different subset of ligands. Similarly to other
galectins, galectin-4 is synthesized as a cytosolic protein, but can be externalized. During development and in adult
normal tissues, galectin-4 is expressed only in the alimentary tract, from the tongue to the large intestine. It is often found
in relatively insoluble complexes, as a component of either adherens junctions or lipid rafts in the microvillus membrane,
and it has been proposed to stabilize these structures. Strong expression of galectin-4 can be induced, however, in
cancers from other tissues including breast and liver. Within a collection of human epithelial cancer cell lines, galectin-4
is overexpressed and soluble in those forming highly differentiated polarized monolayers, but absent in less differentiated
ones. In cultured cells, intracellular galectin-4 may promote resistance to nutrient starvation, whereas—as an extracellular
protein—it can mediate cell adhesion. Because of its distinct induction in breast and other cancers, it may be a valuable
diagnostic marker and target for the development of inhibitory carbohydrate-based drugs.
Published in 2004.
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Introduction: Early discoveries, basic properties, and
expression in normal tissues

Galectins are defined as proteins containing a canonical
carbohydrate recognition domain (CRD) with affinity for
β-galactosides [1–3]. The first discovered protein in the family,
now known as galectin-1, is a non-covalent dimer composed
of a subunit with one CRD, and the later discovered galectin-3
has one CRD linked to a long N-terminal repetitive sequence.
Galectin-4, and an independently discovered 32 kDa galectin
from C. elegans [4], were the first galectins defining a subfam-
ily with two CRDs in one polypeptide chain. Other presently
known mammalian galectins with two CRDs are galectins-8,
-9, and -12, and galectin-6, most likely a recent duplication
of galectin-4 only found in mouse [2,3], and orthologues of
the mammalian bi-CRD galectins have recently been found in
other vertebrates [5,6]. The bi-CRD galectins in more distantly
related species e.g. C.elegans and Drosophila, are too different
to permit identification as orthologues but demonstrate that
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bi-CRD galectins are ancient members of the galectin family
[5,6].

Rat and human galectin-4 consist of CRDs of 133aa and
130aa, respectively, connected by a link peptide of 34aa and
preceded by 17 aa [7,8], and these proportions are similar for
other species. The sequences of the two CRDs are about as
related to each other (about 40% identical) as they are to the
CRDs of galectin-3 and many other galectins, but they are less
similar to galectin-1 (about 20% identical). Composed of two
CRDs, galectin-4 may be functionally divalent, but, as will be
described in detail below, the carbohydrate binding specificities
of the two CRDs are quite different and would be expected to
show preference for different sets of ligands. The link peptide is
homologous to the proline- and glycine-rich repeating domain
of galectin-3. There is no evidence for variation in linker length
due to alternative splicing as found for galectins-8 [9] and -9
[2,10]. High content of basic amino acids in galectin-4 renders
the protein quite basic, especially the C-terminal CRD, with pI
of approximately 9.

The early discoveries of galectin-4 highlight two of its prop-
erties: firstly, it tends to be associated with relatively insoluble
tissue components, and, secondly, the link peptide is sensitive
to proteolysis. Only a fragment containing the C-terminal CRD
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Figure 1. Immunohistochemical detection of galectin-4 in normal human colonic mucosa (panel A–D), an adenomatous polyp
(panel E), and in colon adenocarcinoma (panel F). Five µm-thick sections of formalin-fixed and paraffin-embedded tissues were
deparaffinized, hydrated, and treated using an antigen retrieval procedure. Galectin-4 was localized using rabbit antiserum raised
against the C-terminal CRD of rat galectin-4 (RI-H, [7]) followed by peroxidase-conjugated goat anti-rabbit IgG, and development
with diaminobenzidine (amber to deep brown). Nuclei were counterstained with hematoxylin (blue). In the normal colonic mucosa,
galectin-4 is found in dense supra-nuclear formations in crypt cells (panels A–D, and also distributed as diffusely cytosolic in some
cells closer to the lumen (upper part of panel A). In an adenomatous polyp proximal to an adenocarcinoma the supra-nuclear
formation of galectin-4 are still present, but increased diffuse cytosolic expression is apparent (panel E). In an adenocarcinoma
the supra-nuclear formation of galectin-4 are absent and instead there is strong diffuse cytosolic expression (panel F). Original
magnification: A: 100×; B: 200×; C: 400×; D: 400×; E: 400×; F: 100×.

of rat galectin-4 (named RI-H at the time) was initially isolated
by affinity chromatography of intestinal extracts on lactosyl-
Sepharose [11]; later the N-terminal CRD was also isolated
from rat small intestine [12]. Independently, Chiu et al. isolated,
by a harsh extraction procedure, a protein tightly associated
with adherens junctions in pig tongue epithelium [13], which
was then shown to be full length galectin-4 [14]. Full length
galectin-4 was also identified in detergent-insoluble complexes
from pig small intestine [15]. Localization with antibodies
showed galectin-4 also in dense aggregates in esophageal squa-
mous epithelium [16] and small and large intestinal epithelium
(Figure 1).

The relative insolubility in tissues described above may be
related to the biochemical properties of intact galectin-4 being
relatively hydrophobic (as pointed out, [14]) and poorly sol-
uble (precipitates in buffers of physiological ionic strength at
approximately 2 mg/ml), but may also be due to its tight as-
sociation(s) with endogenous ligands [17]. The fact that only
individual CRDs are found during affinity purification from
tissue extracts suggests cleavage of the link peptide by tissue
proteases. Whether this occurs in vivo and has functional sig-
nificance, however, remains to be demonstrated.

Full-length galectin-4 has only been isolated in soluble form
from human cancer cell lines with a differentiated polariz-
ing epithelial phenotype (panels A–C in Figure 2, [8]) as dis-
cussed in detail below. Even in this case, however, galectin-4
was targeted to specific subcellular domains as demonstrated
by immunofluorescence. Galectin-4 also displayed a strikingly
different localization from that of galectin-3 expressed by the
same cells [8]. Such a difference has also been revealed by im-
munohistochemistry in normal large and small intestinal tissues
(Huflejt and Leffler, unpublished). These observations suggest

that the two galectins will preferentially interact with different
ligands.

Galectin-4 mRNA has been identified in human [8,18], pig
[14], rat [7] and mouse alimentary tract, and in rabbit bladder
[19]. Human galectin-4 EST clones have been isolated mainly
from intestinal cDNA libraries, with the highest prevalence
in colon (1.5–4%), but galectin-4 EST clones have also been
found as rare species in libraries from other tissues such as
breast, ovary and blastocyst (as searched by UniGene under
http://www.ncbi.nlm.nih.gov/entrez/, Nov. 16, 2003).

The analysis of mouse galectin-4 was complicated by the
concomitant discovery of galectin-6 [20]. Galectin-6 is closely
related to galectin-4, so far has only been found in mouse, and
probably arose from a recent gene duplication. It has a linker do-
main shorter by 24aa as compared with galectin-4, but otherwise
the sequences of these two galectins are 93% identical at the
nucleotide level and 83% identical at the amino acid level, with
small differences scattered throughout. Because of this similar-
ity, it has been difficult to distinguish galectin-4 from galectin -6,
and they are detected together in most antibody-based and nu-
cleotide hybridization assays in mice. During embryogenesis,
in situ hybridization showed expression of their mRNAs only in
the developing alimentary system starting from day 13.5 [20], in
stark contrast to the more wide and different expression patterns
for galectins-1, -3, and -7 [21]. In adult mouse tissues galectin-
4/-6 was found by Northern and Western blots again only in
gastrointestinal tissues but not in brain, kidney, skeletal muscle,
heart, liver, lung [20]. An RNAse protection assay, permitting
their separate detection, indicated high expression of galectin-4
in small and large intestine but much lower in stomach, whereas
galectin-6 was equally expressed also in stomach. Western blot
supported this finding, although the detection of galectin-6 was
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Figure 2. Galectin expression profiles in human epithelial can-
cer cell lines. Galectins were isolated by affinity chromatogra-
phy on lactosyl-Sepharose from lysates of cells metabolically
labeled with 35S Met/Cys, resolved by SDS-PAGE and visual-
ized by autoradiography [8,42,62]. Lanes A–C: galectins ex-
pressed by well-differentiated cell lines: T84 colon adenocar-
cinoma (CO, lane A), Mls ovarian adenocarcinoma (OV, lane
B), and Calu-3 lung adenocarcinoma (LU, lane C). Lanes D–F:
galectins expressed by poorly differentiated ovarian carcinoma
cell lines: SRS (lane D), SKA (lane E), OW-1 (lane F); Lanes G–
J: galectins expressed by poorly differentiated lung carcinoma
cell lines: SK-Mes-1 (lane G); Calu-1 (lane H); SK-Lu-1 (lane I);
A549 (lane J). The bands at about 14 and 29 kDa were iden-
tified as galectins-1 and -3, respectively, by Western blotting
with specific antibodies. The band at about 36 kDa in the well-
differentiated cells was identified as galectin-4 by Western blot-
ting and by mass spectrometric mapping of tryptic peptides. The
other bands slightly above or below 36 kDa in the less differenti-
ated cell lines have not been identified but they likely correspond
to other bi-CRD galectin(s).

very weak [20]. There are many mouse galectin-4 ESTs, but
very few, if any, of galectin-6 (as searched by UniGene under
http://www.ncbi.nlm.nih.gov/entrez/, Nov. 16, 2003). This in-
dicates that of the two—galectin-4 is the one mainly expressed
in mouse and is the orthologue of galectin-4 of other mammals,
whereas galectin-6 is a minor component which may have both
overlapping and different functions.

Carbohydrate-binding specificity and cross linking
activity of galectin-4 and its individual domains

Both CRDs of galectin-4 have similar affinities for lactose (Kd

about 0.5–1 mM) to those of galectins-1 and -3, consistent with
their full complement of the galectin signature amino acids
that interact with bound disaccharide in the core binding site,
with identity of six and a conservative substitution of the sev-
enth aa (Lys for Arg) [7]. Moreover, the X-ray crystal structure
of the N-terminal domain of rat galectin-4 (Kayden, Lobsanov,
Leffler, Rini, unpublished) confirms that it adheres closely to the

canonical galectin structure. This justifies interpreting galectin-
4 specificity based on the general model for galectins, with
subsites A-E, presented in the Introduction to the special issue
[3]). The core β-Gal residue is bound in subsite C and inter-
acts with most of the signature aa residues. However, the two
CRDs of galectin-4 differ significantly, both from each other
and from other galectins, in preference for other disaccharides
(extensions at the reducing side of the Gal into subsite D) and
fine specificity for larger saccharides (extensions at the non-
reducing side of the Gal into subsite B and A).

For the N-terminal CRD of rat galectin-4, Galβ1-4GlcNAc
(LacNAc) is a significantly worse ligand than lactose, in con-
trast to the case of galectin-1 and -3 for which LacNAc is the
preferred and most common ligand. The affinity of galectin-
4-N for LacNAc, is, in fact, about 50 fold lower as compared
to galectins-1 and -3. Instead, 3-linked saccharides at the re-
ducing side of Gal (in subsite D), i.e. Galβ1-3GlcNAc and
Galβ1-3GalNAc (T-antigen) were better ligands than LacNAc
[7]. These results were confirmed and extended in a more recent
study with a larger number of glycoproteins and saccharides
[22]. Of the saccharides used in this study, Galβ1-3GlcNAcβ1-
4Galβ1-4Glc was the best ligand/inhibitor. However, it is not
known in which of two possible alternative ways it binds the
galectin: with the terminal Galβ1-3GlcNAc in the core binding
site (C–D, [3]) and the Galβ1-4Glc in site E, or with the internal
Galβ1-4Glc in the core site with Galβ1-3GlcNAc in sites A–B.
Except for possibly the latter case, no specific preference for
extension at the non-reducing side of the core Gal into subsite
B was found so far [7,22].

For the C-terminal domain of rat galectin-4, LacNAc is also
a weaker ligand than Lac, but so are Galβ1-3GlcNAc and
Galβ1-3GalNAc [7]. At the non-reducing side of the core Gal
(in subsite B) the C-terminal domain shows a preference for
GalNAcα1-3 (part of a blood group A determinant) almost as
strong as galectin-3, whereas this is not the case for the N-
terminal CRD [7,22].

When the two domains of rat galectin-4 were used as his-
tochemical probes on intestinal tissue sections, they showed
strikingly different staining patterns indicating preferences for
different endogenous ligands [23]. Most recently distinct speci-
ficity differences between the two CRDs of human galectins-4
have been confirmed by fluorescence polarization analysis us-
ing a panel of probes [24]. In another study, a preference of
full-length human galectin-4 for 3-O-sulfated Gal was found,
but the role of each domain was not determined [25]. It, there-
fore, may be suggested that the N-terminal domain was involved
in this interaction since the best saccharide inhibitor had the
3-O-sulfate linked to Galβ1-3GalNAc, a disaccharide preferred
by the N-terminal domain as discussed above.

From the specificities described above, it is clear that
galectin-4 is bivalent in a modified sense: it cross-links ligands,
but these ligands will likely be different for each CRD. If and
how this fact influences the biological activities of galectins-4
remains to be elucidated. Differences in carbohydrate-binding
specificities of individual CRDs are also an important question
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in case of other bi-CRD galectins, as discussed for galectins-9
[10].

The full-length galectin-4 and the two domains behave as
monomers upon size exclusion chromatography [7,11]. How-
ever, this does not rule out that under certain conditions such
as high concentration, or encounter with appropriate ligands,
dimers or oligomers of higher order can be formed, as has
been the case for mono-CRD galectins-3, -5 and -7 [3,26].
Such aggregation might explain why the N-terminal domain
of rat galectin-4 appears to interact particularly avidly with
certain mucins carrying multiple Galβ-containing saccharides
[22]. However, as these assays are complex and require di-
rect binding to immobilized mucin or inhibition by soluble
mucin, and the mucins are large (over 1 million Da), hetero-
geneous and only partially defined, other explanations are also
possible.

Recently synthetic inhibitors of galectin-4 have begun to be
developed. Screening of a panel of 66 compounds, constructed
by aromatic addition at C3 of the core Gal [27], revealed those
compounds that inhibited either domain, as well as both [28]. In
another line of investigation lactulose-amines have been found
to bind to the full-length galectin-4 in a BIAcore assay, with di-
lactulose hexamethylene di-amine (L2) showing higher binding
affinity than mono-lactulose amines [29]. The L2 compound
also retarded growth of breast tumors in mice transgenic for
Her-2/neu, as described in detail below. It is currently under
investigation whether galectin-4 or other galectin(s) in murine
tumors are targeted by L2.

Galectin-4 in human malignancies

Over 200 reports describe tumor-dependent changes in local-
ization and expression levels of galectins 1 and -3, and var-

Figure 3. Immunohistochemical detection of galectin-4 in normal human breast (panel A), benign breast disease (panel B), ductal
carcinoma in situ (DCIS) (panel C), ductal carcinoma (panels D–F) and lobular carcinoma (panel G). Breast tissues were processed
and immunostained as in Figure 2, omitting the antigen retrieval step. Normal reduction mammoplasty with no staining for galectin-4
(panel A), hyperplasia without atypical component with weak to moderate staining for galectin-4 (panel B), ductal carcinoma in situ
(DCIS) with galectin-4 expression in enlarged individual cells (panel C), infiltrating ductal carcinoma with high galectin-4 in cancer
cells but not surrounding cells (panel D–F), infiltrating lobular carcinoma with galectin-4 expression in interspersed cancer cells
(panel G). Original magnification: A: 400×; B: 200×; C: 400; D: 400×; E: 600×; F: 600×; G: 200×.

ious tumor-promoting activities of these proteins have been
demonstrated [30–32]. More recent evidence shows that ex-
pression of many other galectins, including galectin-4, is al-
tered in human malignancies [9,10,18,29,33–38]. Galectin-
4 was also identified as a target for autologous antibodies
in patients with colon cancer [39], a phenomenon also ob-
served for galectin-9 in Hodgkin’ lymphoma [40]. Galectin-
8 has also been found to be immunogenic in cancer tissue,
as it was identified as a major target for tumor specific mon-
oclonal antibodies raised against prostate and lung cancers
[9,41].

Most of the studies on tumor-related galectin-4 expression re-
port only changes at the mRNA level. In colon cancers galectin-
4 mRNA expression was found to be much lower than in normal
colon tissues [18]. In contrast, it was higher in hepatocellu-
lar carcinomas [35] and in gastric cancer cells with increased
metastatic potential [36], as compared to the low level in the
corresponding normal tissues. To understand the biological sig-
nificance of such changes it will be necessary to also analyze
galectin-4 protein expression and localization in the same tis-
sues.

Immunohistochemical analysis of galectin-4 protein expres-
sion and localization is the subject of an on-going prospective
study [29,37]. Examples of colon and breast tissues are shown
in Figures 1 and 3. In colon, the dominating feature during ma-
lignant transformation appears to be the progressive loss of the
dense supra-nuclear galectin-4 aggregates, typical for the nor-
mal crypt and upper crypt epithelial, cells (panels A–D), and
increase in the concentration of cytosolic galectin-4 showing
more diffuse distribution (Figure 1E–F). In another study an
increased percentage of cells expressing galectin-4 (immuno-
histochemical labeling index) was found to correlate with a poor
prognosis of colon carcinoma [38].
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Galectin-4 expression patterns indicated during malignant
transformation of the breast were very different from the pat-
terns found in colon. Tissues from reduction mammoplas-
ties without cytopathological abnormalities and normal tissues
surrounding the malignant component, in most cases showed
minimal or no galectin-4 expression (Figure 3A) [37]. Weak
induction of galectin-4 was clearly associated with epithelial
hyperproliferation (Figure 3B), and the atypical component in
benign breast biopsies often showed very high intracellular ex-
pression. The highest levels of galectin-4 expression were found
in the ductal carcinoma in situ cases (DCIS, Figure 3C) and in a
subset of infiltrating ductal carcinomas (Figure D–E). The high
intracellular galectin-4 in breast cancer cells was diffusely cy-
tosolic as in colon cancer. However, the nuclear localization of
galectin-4 was found much more frequently in the breast tissues
as compared with the colon tissues.

To explore galectin-4 protein expression in cultured cancer
cells and to identify a suitable cell culture system for functional
studies, galectin profiles of several human cancer cell lines were
generated. Galectins were isolated from lysates of metabolically
labeled cells by affinity chromatography on lactosyl-Sepharose
and separated by SDS-PAGE (Figure 2) [8,42]. This study re-
vealed, that galectin-4 was only expressed by highly differen-
tiated cell lines, which form polarized monolayers and are ca-
pable of developing high transepithelial resistance: colon ade-
nocarcinoma T84, lung adenocarcinoma Calu-3, and ovarian
adenocarcinoma Mls. The presence of galectin-4 in T84 cells
might reflect the fact that this galectin is expressed in normal
colon epithelium. However, the other two cell lines were de-
rived from cancers arising in lung and ovary, where expression
of galectin-4 has not been previously reported. As mentioned
above, the galectins-3 and -4, occupy distinctly different sub-
cellular and membrane-associated domains in T84 cells [8].

The poorly differentiated epithelial cell lines derived from
ovarian and lung cancers, did not form high transepithelial re-
sistance when grown on filters, but instead had an increased
ability to migrate through a model basement membrane [42].
These cells lacked galectin-4, and instead expressed high levels
of galectin-1 protein. Galectin-3 appeared to be equally ex-
pressed in all cell lines tested. Poorly differentiated epithelial
cancer cell lines often show multiple features of mesenchy-
mal cells. Galectin-1 is absent in normal epithelia, but is often
found in normal cells and tissues of mesenchymal origin [21],
and therefore its presence in epithelial cancer cells might be
symptomatic of advanced stage of malignant transformation.

Figure 4. Schematic of the human galectin-4 gene (LGALS4) upstream regulatory elements [46,47].

Human galectin-4 gene regulation

Mammalian genes encoding galectins are named LGALS
(lectin, galactoside-binding, soluble), and numbered consis-
tently with the proteins [43,44]. Murine Lgals4 and Lgals6
were mapped cytogenetically to a site near ApoE on chromo-
some 7 [45], which is syntenic with the q13.1–2 region of human
chromosome 19, where the human galectin-4 gene, LGALS4,
was later found during sequencing of the genome. In the cur-
rent release of the mouse genome DNA sequence, however,
Lgals4/6 like genes are found both on chromosome 7 and 3,
suggesting that further analysis is necessary to ascertain their
location.

To identify the transcriptional start site(s) and the upstream
regulatory elements in the human galectin-4 encoding gene
LGALS4, mRNA from the human colon adenocarcinoma T-84
cell was used in primer extension and RNase protection assays
[46,47]. The main transcriptional start site was found at position
−55 nt, which is 33 bases downstream from a near consensus
TATA box, and therefore it appears that in T-84 cells, a TATA
promoter primarily regulates galectin-4 gene expression. Low
levels of transcription may also occur from the sites at −65 and
−58 nt, and from another promoter beyond −184 nt upstream
of the TATA box.

Analysis of about 1.5 Kb of 5′ non-coding sequence upstream
of the transcription start sites in LGALS4 revealed the presence
of putative binding sites for a number of transcription factors
associated with epithelial development, differentiation, and ma-
lignant transformation (Figure 4), including HNF-4, MyoD,
c-Rel, HNF-3β, CAAT enhancer binding protein (C/EBP) and
HFH-2.

HNF-4, HNF-3β and HFH-2 are members of the Hepatocyte
Nuclear Factor 3 (HNF-3)/fork family of transcription factors
important for liver-specific gene expression as well as in epithe-
lial cell type specific gene expression in adult tissues derived
from gut endoderm [48,49]. They could, therefore, contribute
to the neoplastic transformation-related increases in galectin-4
mRNA expression in liver [35]. Galectin-4 mRNA levels were
substantially higher in hepatocellular carcinoma tissues as com-
pared with matched non-tumorous liver tissues in the same pa-
tients. In the HuH-7 and HepG2 cell lines derived from hepa-
tocellular carcinoma, the expression of galectin-4 mRNA was
dependent on the cell density and serum concentration: unde-
tectable in rapidly proliferating and subconfluent cells grown in
10% serum, high in dense and overconfluent cultures grown in
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10% serum, and induced to high levels in cultures grown at 0.1%
serum [35]. These hepatocellular neoplasia-related changes in
galectin-4 mRNA expression are consistent with our observa-
tions on increases in galectin-4 protein expression levels during
malignant transformation of breast, colon and ovarian tissues,
described in the previous section.

CAAT enhancer binding proteins, C/EBPs, have been found
highly expressed in differentiated cells of the liver, gut epithelial
cells, and during differentiation of keratinocytes and squamous
epithelium [50,51]. One of them, MyoD, has been implicated
in the regulation of gene expression in proliferating and differ-
entiating epithelial cells as well as other tissues [52].

Constitutive expression of galectin-4 in gastrointestinal mu-
cosa and the presence of two binding sites for c-Rel, a sub-
unit of NFκ-B, in the promoter region of galectin-4 sug-
gests that galectin-4 might be involved in NFκ-B -mediated
gastrointestinal inflammatory responses. Activated during mi-
crobial infection NFκ-B induces multiple target genes which
play a role in the host’s resistance to pathogenic microorgan-
isms and in host gastrointestinal mucosal defense [53,54]. It
is therefore conceivable that in response to microbial infec-
tion, galectin-4 is further overexpressed and secreted to in-
teract with microorganisms as suggested for other galectins
[55–57].

Aberrant constitutive activation of NFκ-B and high expres-
sion levels of nuclear c-Rel have been recently reported in hu-
man breast cancers, as well as in other solid and hematopoi-
etic malignancies [58–60]. To study the role of c-Rel factor in
breast tumorigenesis, mice transgenic for murine c-Rel were
generated, in which overexpression of c-Rel was driven by
the hormone-responsive mouse mammary tumor virus long ter-
minal repeat (MMTV-LTR) promoter [61]. The expression of
c-Rel in the mammary gland of these animals was increased,
and the animals eventually developed one or more mammary
tumors. The tumors expressed increased levels of nuclear NFκ-
B, and aberrant expression of multiple NFκ-B subunits c-Rel,
p50, p52, RelA and RelB was observed. Increased expression
of NFκ-B target genes cyclin D1, c-myc and bcl-xl in these
tumors was also found. The presence of c-Rel binding sites in
the promoter region of LGALS4, and induction/overexpression
of galectin-4 in human breast, lung, colon and ovarian malig-
nancies, suggest the interesting possibility that galectin-4 is a
downstream component of the c-Rel and NFκ-B-driven tumor
promoting biology.

The upstream sequence of mouse Lgals6 was also analyzed
and transcription start sites identified by primer extension [45].
Two TATA–box-containing promoters were indicated, together
with a number of potential binding sites for transcription
factors. Notable among these were 6E-boxes from which one
was similar to MycMax and the others to MyoD binding sites.
There was also present a 19 bp stretch implicated in intestine-
specific expression. The proximal TATA box corresponds to
the one at −88 in human LGALS4 with similar surrounding se-
quence including one downstream E-box. Otherwise the major

upstream similarity was in a sequence between −290 and
−400 in the LGALS4, which includes one conserved E-box.

Possible function of galectin-4 in normal and cancer tissues

The data presented above support a number of possible func-
tions for galectin-4. The localization and relative insolubility
in normal epithelia suggest roles in stabilization of cellular
junctions and membranes. This is also supported by the lo-
calization of galectin-4 near the junctional complex in EDTA
treated cultured T84 cells [8]. The association with detergent
insoluble fractions from microvillar membranes, suggests a
function in stabilizing certain lipid rafts. Similarly to other
galectins, galectin-4 can mediate cell adhesion [8], and induce
intracellular signaling (oxidative burst in neutrophils, Almquist,
Karlsson, Leffler, unpublished), but the latter have not been ex-
plored in great detail.

Effects of intracellular galectin-4 on cell growth are likely
since this protein is expressed mainly intracellularly with cy-
tosolic or both cytosolic and nuclear distribution in cancer cells
(see above), and it has been shown that galectin-3 and other
galectins have such effects. To model the induction of galectin-
4 in differentiated epithelial cells, seen in early stages of ma-
lignant transformation, we used MDCK cells which form well
differentiated epithelial monolayers, and express galectin-3 but
not galectin-4 [8,62]. Wild type and mock transfected MDCK
cells were unable to grow in serum free medium and became
morphologically apoptotic after 7–10 days, whereas MDCK
cells transfected with full-length human galectin-4 cDNA and
expressing this protein, survived in serum-free medium for 7–
8 weeks (Figure 5). Most interestingly, these cells started to
proliferate within 4–6 hours after the addition of 10% serum-
containing medium. Thus, upon expression of galectin-4, ep-
ithelial cells acquired a phenotype characterized by the ability
to survive lack of nutrients and growth factors for the prolonged
period of time. Such a cellular phenotype is likely to be advan-
tageous in hyperplastic tissues of pre-malignant and malignant
tumors.

Galectin-4 as a diagnostic marker and target
for anti-cancer drug development

Many studies have explored the possible use of galectins—in
particular galectin-3—as diagnostic cancer markers. Although
some promising results have been reported, the picture is of-
ten confounded by the rather high expression of galectin-3 in
many tissues, and its induction also in inflammatory conditions
[9,31,32]. The much more restricted distribution of galectin-4
in normal tissues, but clear induction in early stages of breast
and other cancers, therefore, makes it a particularly promising
diagnostic and prognostic marker [29,37]. Galectin-4 could be
detected using immunohistochemistry as in our ongoing stud-
ies, or by tagged ligands for e.g. in vivo imaging. In the latter
case, the different and high specificities of the two CRDs of
galectin-4 described above, suggest that heterodivalent ligands
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Figure 5. Growth of mock-transfected (panel A) and human full-length galectin-4 cDNA-transfected (panel B) MDCK cells. Mock
transfected MDCK cells (panel A) stopped growing in medium without serum and only single cells were seen after 7–10 days (wild
type MDCK cells display identical behavior (not shown), whereas galectin-4-transfected MDCK cells (panel B) survided in serum
free medium for 7–8 weeks. Images were taken by phase contrast/Nomarski optics. Original magnification: 600×.

targeting both domains should provide highly specific imaging
probes.

If galectin-4 is not only a marker of early malignancy but also
promotes cancer growth as suggested by the functional studies
described above, inhibiting its activity should be an important
component of anti-cancer therapies. Therapeutic approaches
using saccharide derivatives that inhibit galectins in vitro have
begun. The first galectin inhibitor used in clinical setting was
modified citrus pectin, a large and complex polysaccharide rich
in anhydrogalacturonic acid, galactose and arabinose, devel-
oped by Raz and colleagues [31]. This non-toxic compound
has shown strong anti-metastatic activities in rat prostate cancer
model [63], and is now in dose-escalation clinical trials (GBC-
590, Phase I/II, Glycogenesys, Boston MA). The first trial
results presented during the ASCO 2001 meeting reported
no toxicity in either colorectal or pancreatic cancer patients
(Springgate CF et al., Abstr. 2226, ASCO 2001; Stuart KE
et al., Abstr. 2312, ASCO 2001). Glycosylamines have also
been shown to inhibit cancer growth in animal models [64,65],
and more recently remarkable effects of lactulose and a diva-
lent lactulose amine have been demonstrated [29]. However,
in neither of the above therapeutic applications were the sub-
stances very specific and it is uncertain which galectin—or
galectins—they bind and inhibit in vivo. To specifically ad-
dress tumor-promoting activity of galectin-3, a dominant neg-
ative peptide inhibitor of galectin-3, which contains galectin-3
CRD, has been generated. This recombinant protein inhibited
primary tumor growth and metastasis in a mouse model of hu-
man breast cancer [66]. However, although this peptide was
designed as a specific dominant negative inhibitor of galectin-
3, it is not certain, whether in vivo this was its only function.
All the above results lead to a general conclusion that by block-
ing galectin activities it is possible to reduce tumor growth and
metastasis. However, because of the multi-functional nature of
the galectin family members, individual galectin-specific in-
hibitors are needed to address the activities of these proteins in
the patho-biological complexities of tumor-bearing organisms.

Attempts at constructing more specific and more potent
monovalent or multivalent galectin inhibitors are ongoing
[27,28,67]. These projects are encouraged by very promis-
ing in vivo effects, and by the apparent lack of toxicity of
tested inhibitors. Galectin-4 null mutant mice are not yet avail-
able, however, galectin-1, galectin-3 and galectin-1/-3 null mu-
tant mice appear healthy. It will therefore be important to de-
termine whether blocking activities of galectin-4, as well as
other galectins overexpressed in human cancers, would de-
liver important therapeutic effects, with no or minimal adverse
effects.
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